Dictionary Definition
iron adj : extremely robust; "an iron
constitution" [syn: cast-iron]
Noun
1 a heavy ductile magnetic metallic element; is
silver-white in pure form but readily rusts; used in construction
and tools and armament; plays a role in the transport of oxygen by
the blood [syn: Fe, atomic
number 26]
2 a golf club that has a relatively narrow metal
head
4 implement used to brand live stock [syn:
branding
iron]
5 home appliance consisting of a flat metal base
that is heated and used to smooth cloth [syn: smoothing
iron] v : press and smooth with a heated iron; "press your
shirts" [syn: iron out]
User Contributed Dictionary
English
Etymology 1
From etyl enm iren, a rhotacism of etyl ang isern (also isærn, iren, isen). Cognate to the Middle Dutch iser (Dutch ijzer), Frankish isarn, Old Frisian isern, Old High German isarn (German Eisen), Old Norse járn (Swedish järn), Old Saxon isarn.The word derives from the , which is most likely
from the (Old Irish iarn, Welsh haearn, haiarn), from the , from
the . Cognate on that level to the Sanskrit | and the Greek
sc=Grek. Possibly akin to the Latin ira.
Noun
- uncountable element A metallic chemical element having atomic number 26, and symbol Fe.
- A tool or appliance made of metal, which is heated and then used to transfer heat to something else; most often a thick piece of metal fitted with a handle and having a flat, roughly triangular bottom, which is heated and used to press wrinkles from clothing, and now usually containing an electrical heating apparatus.
- In the context of "usually plural, irons}} Shackles.
- elements.vanderkrogt.net – more information about the etymology and the chemical element. (Some of the translations were taken from that site with the permission of the author.)
Etymology 2
Pronunciation
Extensive Definition
- Fe redirects here. For other uses, see Fe
(disambiguation).
- For other uses, see Iron (disambiguation).
Iron and nickel are the most abundant metals in
metallic meteorites and in the dense-metal cores of planets such as
Earth. Iron and iron alloys are also the most common
source of ferromagnetic materials in
everyday use.
Occurrence
Iron is believed to be the sixth most abundant element in the universe, formed as the final act of nucleosynthesis by carbon burning in massive stars. While it makes up only about 5% of the Earth's crust, the earth's core is believed to consist largely of an iron-nickel alloy constituting 35% of the mass of the Earth as a whole. Iron is consequently the most abundant element on Earth, but only the fourth most abundant element in the Earth's crust. Most of the iron in the crust is found combined with oxygen as iron oxide minerals such as hematite and magnetite. About 1 in 20 meteorites consist of the unique iron-nickel minerals taenite (35-80% iron) and kamacite (90-95% iron). Although rare, meteorites are the major form of natural metallic iron on the earth's surface.The reason for Mars' red colour is thought to be
an iron-oxide-rich soil.
Characteristics
Iron is a metal extracted mainly from the iron ore hematite. It oxidises readily in air and water to form and is rarely found as a free element. In order to obtain elemental iron, oxygen and other impurities must be removed by chemical reduction. The properties of iron can be modified by alloying it with various other metals and some non-metals, notably carbon and silicon to form steels.Nuclei of iron have some of the highest binding
energies per nucleon, surpassed only by the nickel
isotope 62Ni. The universally most abundant of the highly
stable nuclides is, however, 56Fe. This is formed by nuclear fusion
in stars. Although a further tiny energy gain could be extracted by
synthesizing 62Ni, conditions in stars are unsuitable for this
process to be favoured, and iron abundance on Earth greatly favors
iron over nickel, and also presumably in supernova element
production.
Iron (as Fe2+, ferrous ion) is a necessary
trace
element used by almost all living organisms. The only
exceptions are several organisms that live in iron-poor
environments and have evolved to use different elements in their
metabolic processes, such as manganese instead of iron for
catalysis, or hemocyanin instead of
hemoglobin. Iron-containing enzymes, usually containing heme prosthetic groups, participate
in catalysis of oxidation reactions in biology, and in transport of
a number of soluble gases. See hemoglobin, cytochrome, and catalase.
Allotropes
Iron represents perhaps the best-known example of allotropy in a metal. There are four allotropic forms of iron, known as alpha, beta, gamma, and delta.As molten iron cools down it crystallises at
1535°C into its delta allotrope, which has a body-centred
cubic (BCC) crystal structure. As it cools further its crystal
structure changes to face-centred
cubic (FCC) at 1401°C, when it is known as gamma-iron, or
austenite. At 912°C the crystal structure again becomes BCC as
beta-iron is formed, and at 770°C (the Curie point, Tc) the iron
becomes magnetic as
alpha-iron, also known as ferrite, which is also BCC, is
formed. Thus there is no change in crystalline structure, but there
is a change in 'domain structure', where each domain contains iron
atoms with a particular electronic spin. In unmagnetised iron, all
the electronic spins of the atoms within one domain are in the same
direction. However, in neighbouring domains they point in various
directions and thus cancel out. In magnetised iron, the electronic
spins of all the domains are all aligned, so that the magnetic
effects of neighbouring domains reinforce each other. Although each
domain contains billions of atoms, they are very small, about one
thousandth of a centimetre across.
Iron is of most importance when mixed with
certain other metals and with carbon to form steels. There are many
types of steels, all with different properties; and an
understanding of the properties of the allotropes
of iron is key to the manufacture of good quality steels.
Alpha iron, also known as ferrite, is the most
stable form of iron at normal temperatures. It is a fairly soft
metal that can dissolve only a small concentration of carbon (no
more than 0.021% by mass at 910 °C).
Above 912°C and up to 1401°C alpha iron undergoes
a phase
transition from body-centred cubic to the face-centred cubic
configuration of gamma iron, also called austenite. This is similarly
soft and metallic but can dissolve considerably more carbon (as
much as 2.04% by mass at 1146°C). This form of iron is used in the
type of stainless
steel used for making cutlery, and hospital and food-service
equipment.
Applications
Iron is the most widely used of all the metals, accounting for 95% of worldwide metal production. Its low cost and high strength make it indispensable in engineering applications such as the construction of machinery and machine tools, automobiles, the hulls of large ships, and structural components for buildings. Since pure iron is quite soft, it is most commonly used in the form of steel. Some of the forms in which iron is produced commercially include:- Pig iron has 3.5—4.5% carbon and contains varying amounts of contaminants such as sulfur, silicon and phosphorus. Its only significance is that of an intermediate step on the way from iron ore to cast iron and steel.
- Cast iron contains 2—4% carbon, 1—6% silicon, and small amounts of manganese. Contaminants present in pig iron that negatively affect material properties, such as sulfur and phosphorus, have been reduced to an acceptable level. It has a melting point in the range of 1420—1470 K, which is lower than either of its two main components, and makes it the first product to be melted when carbon and iron are heated together. Its mechanical properties vary greatly, dependent upon the form carbon takes in the alloy. 'White' cast irons contain their carbon in the form of cementite, or iron carbide. This hard, brittle compound dominates the mechanical properties of white cast irons, rendering them hard, but unresistant to shock. The broken surface of a white cast iron is full of fine facets of the broken carbide, a very pale, silvery, shiny material, hence the appellation. In grey iron the carbon exists free as fine flakes of graphite, and also renders the material brittle due to the stress-raising nature of the sharp edged flakes of graphite. A newer variant of grey iron, referred to as ductile iron is specially treated with trace amounts of magnesium to alter the shape of graphite to spheroids, or nodules, vastly increasing the toughness and strength of the material.
- Wrought iron contains less than 0.25% carbon. with small amounts of manganese, sulfur, phosphorus, and silicon.
- Alloy steels contain varying amounts of carbon as well as other metals, such as chromium, vanadium, molybdenum, nickel, tungsten, etc. They are used for structural purposes, as their alloy content raises their cost and necessitates justification of their use. Recent developments in ferrous metallurgy have produced a growing range of microalloyed steels, also termed 'HSLA' or high-strength, low alloy steels, containing tiny additions to produce high strengths and often spectacular toughness at minimal cost.
- Iron(III) oxides are used in the production of magnetic storage media in computers. They are often mixed with other compounds, and retain their magnetic properties in solution.
The main disadvantage of iron and steel is that
pure iron, and most of its alloys, suffer badly from rust if not protected in some way.
Painting,
galvanization,
passivation, plastic
coating and bluing are
some techniques used to protect iron from rust by excluding
water and oxygen or by sacrificial
protection.
Iron is believed to be the critical missing
nutrient in the ocean that limits the growth of plankton. Experimental iron
fertilization of areas of the ocean using iron(II)
sulfate has proven successful in increasing plankton growth.
Larger scaled efforts are being attempted with the hope that iron
seeding and ocean plankton growth can remove carbon
dioxide from the atmosphere, thereby counteracting the greenhouse
effect that is generally agreed by climatologists to cause
global
warming. The main problem with iron fertilisation is the low
photic depth of the Southern Ocean when compared with the mixing
depth, resulting in phytoplankton death and reducing the NET amount
of carbon dioxide taken up. The NET deposition of carbon into the
ocean bed is only around 2% of the carbon taken up by the
phytoplankton as carbon dioxide, as shown by research by IASOS
(Institute of Antarctic & Southern Ocean Studies), AAD
(Australian Antarctic Division) and ACE CRC (Antarctic Climate
& Ecosystems Cooperative Research Centre).
Iron compounds
- Iron oxides (FeO, Fe3O4, and Fe2O3) are ores used for iron production (see bloomery and blast furnace). They are common components of terrestrial rocks.
- Iron(III) ammonium oxalate (Fe(NH4)3(C2O4)4) is used in blueprints.
- Iron(III) arsenate (FeAsO4) is used in insecticide.
- Iron(III) chloride (FeCl3) is used: in water purification and sewage treatment, in the dyeing of cloth, as a coloring agent in paints, as an additive in animal feed, and as an etching material for engravement, photography and printed circuits.
- Iron(III) chromate (Fe2(CrO4)3) is used as a yellow pigment for paints and ceramic.
- Iron(III) hydroxide (Fe(OH)3) is used as a brown pigment for rubber and in water purification systems.
- Iron(III) phosphate (FePO4) is used in fertilizer and as an additive in human and animal food.
- Iron(II) acetate (Fe(C2H3O2)2 is used in the dyeing of fabrics and leather, and as a wood preservative.
- Iron(II) gluconate (Fe(C6H11O7)2) is used as a dietary supplement in iron pills.
- Iron(II) oxalate (FeC2O4) is used as yellow pigment for paints, plastics, glass and ceramic, and in photography.
- Iron(II) sulfate (FeSO4) is used in water purification and sewage treatment systems, as a catalyst in the production of ammonia, as an ingredient in fertilizer and herbicide, as an additive in animal feed, in wood preservative and as an additive to flour to increase iron levels.
Historical aspects
The first iron used by mankind during prehistory came from meteors. The smelting of iron in bloomeries probably began in Anatolia or the Caucasus in the second millennium BC or the later part of the preceding one. Cast iron was first produced in China about 550 BC, but not in Europe until the medieval period. During the medieval period, means were found in Europe of producing wrought iron from cast iron (in this context known as pig iron) using finery forges. For all these processes, charcoal was required as fuel.Steel (with a smaller
carbon content than pig iron but
more than wrought
iron) was first
produced in antiquity. New methods of producing it by carburizing bars of iron in
the cementation
process were devised in the 17th century AD. In the Industrial
Revolution, new methods of producing bar iron without charcoal
were devised and these were later applied to produce steel. In the
late 1850s, Henry
Bessemer invented a new steelmaking process, involving blowing
air through molten pig iron, to produce mild steel. This and other
19th century and later processes have led to wrought iron
no longer being produced.
Production of iron from iron ore
seealso Iron oreThe production of iron or steel is a process
unless the desired final product is cast iron. The
first stage is to produce pig iron in a
blast
furnace. The second is to make wrought iron
or steel from pig iron by
a further process.
Blast furnace
Ninety percent of all mining of metallic ores is for the extraction of iron. Industrially, iron is produced starting from iron ores, principally haematite (nominally Fe2O3) and magnetite (Fe3O4) by a carbothermic reaction (reduction with carbon) in a blast furnace at temperatures of about 2000 °C. In a blast furnace, iron ore, carbon in the form of coke, and a flux such as limestone (which is used to remove impurities in the ore which would otherwise clog the furnace with solid material) are fed into the top of the furnace, while a blast of heated air is forced into the furnace at the bottom.The carbon monoxide reduces the iron ore (in the
chemical
equation below, hematite) to molten iron, becoming carbon
dioxide in the process:
The flux is present to melt impurities in the
ore, principally silicon
dioxide sand and other
silicates. Common
fluxes include limestone (principally calcium
carbonate) and dolomite (calcium-magnesium carbonate). Other
fluxes may be used depending on the impurities that need to be
removed from the ore. In the heat of the furnace the limestone flux
decomposes to calcium
oxide (quicklime):
Then calcium oxide combines with silicon dioxide
to form a slag.
The slag melts in the heat of the furnace. In the
bottom of the furnace, the molten slag floats on top of the more
dense molten iron, and apertures in the side of the furnace are
opened to run off the iron and the slag separately. The iron once
cooled, is called pig iron, while
the slag can be used as a material in road construction or to improve
mineral-poor soils for agriculture.
In 2005, approximately 1,544 Mt (million metric tons)
of iron ore was produced worldwide. China was the top producer of
iron ore with at least one-fourth world share followed by Brazil,
Australia and India, reports the British
Geological Survey.
Further processes
Pig iron is not pure iron, but has 4-5% carbon dissolved in it. This is subsequently reduced to steel or commercially pure iron, known as wrought iron, using other furnaces or converters.Isotopes
Naturally occurring iron consists of four isotopes: 5.845% of radioactive 54Fe (half-life: >3.1×1022 years), 91.754% of stable 56Fe, 2.119% of stable 57Fe and 0.282% of stable 58Fe. 60Fe is an extinct radionuclide of long half-life (1.5 million years).Much of the past work on measuring the isotopic
composition of Fe has centered on determining 60Fe variations due
to processes accompanying nucleosynthesis (i.e.,
meteorite studies) and
ore formation. In the last decade however, advances in mass
spectrometry technology have allowed the detection and
quantification of minute, naturally occurring variations in the
ratios of the stable
isotopes of iron. Much of this work has been driven by the
Earth and
planetary
science communities, although applications to biological and
industrial systems are beginning to emerge.
The isotope 56Fe is of particular interest to
nuclear scientists. A common misconception is that this isotope
represents the most stable nucleus possible, and that it thus would
be impossible to perform fission or fusion on 56Fe and still
liberate energy. This is not true, as both 62Ni and 58Fe are more
stable, being the most stable nuclei. However, since 56Fe is much
more easily produced from lighter nuclei in nuclear reactions, it
is the endpoint of fusion chains inside
extremely massive stars and is therefore common in the
universe, relative to other metals.
In phases of the meteorites Semarkona and
Chervony Kut a correlation between the concentration of 60Ni, the daughter
product of 60Fe, and the abundance of the stable iron isotopes
could be found which is evidence for the existence of 60Fe at the
time of formation of the solar system. Possibly the energy released
by the decay of 60Fe contributed, together with the energy released
by decay of the radionuclide 26Al, to the
remelting and differentiation
of asteroids after
their formation 4.6 billion years ago. The abundance of 60Ni present in extraterrestrial
material may also provide further insight into the origin of the
solar
system and its early history. Of the stable isotopes, only 57Fe
has a nuclear spin
(−1/2).
Iron in organic synthesis
The use of iron metal filings in organic synthesis is mainly for the reduction of nitro compounds. Additionally, iron has been used for desulfurizations, reduction of aldehydes, and the deoxygenation of amine oxides.Iron in biology
Iron is essential to nearly all known organisms. In cells,
iron is generally stored in the centre of metalloproteins, because
"free" iron -- which binds non-specifically to many cellular
components -- can catalyse production of toxic free
radicals. Iron
deficiency can lead to iron
deficiency anemia.
In animals, plants, and fungi, iron is often
incorporated into the heme
complex. Heme is an essential component of cytochrome proteins, which
mediate redox reactions,
and of oxygen carrier proteins such as hemoglobin, myoglobin, and leghemoglobin. Storage
forms of iron, like ferritin, do not contain heme.
Inorganic iron also contributes to redox reactions in the iron-sulfur
clusters of many enzymes, such as nitrogenase (involved in the
synthesis of ammonia
from nitrogen and
hydrogen) and hydrogenase. Non-heme iron
proteins include the enzymes methane
monooxygenase (oxidizes methane to methanol), ribonucleotide
reductase (reduces ribose to deoxyribose; DNA
biosynthesis), hemerythrins (oxygen transport and fixation in
marine invertebrates) and purple acid phosphatase (hydrolysis of phosphate esters).
The role of iron in the human body is almost
exclusively in the process of respiration(utilization of
oxygen).
Iron distribution is heavily regulated in
mammals, partly because
iron has a high potential for biological toxicity. Iron
distribution is also regulated because many bacteria require iron,
so restricting its availability to bacteria (generally by sequestering
it inside cells) can help to prevent or limit infections. This is
probably the reason for the relatively low amounts of iron in
mammalian milk. A major component of this regulation is the protein
transferrin, which
binds iron absorbed from the duodenum and carries it in the
blood to
cells.
Nutrition and dietary sources
Good sources of dietary iron include red meat, fish, poultry, lentils, beans, leaf vegetables, tofu, chickpeas, black-eyed peas, potatoes with skin, bread made from completely whole-grain flour, molasses, teff and farina. Iron in meat is more easily absorbed than iron in vegetables, but heme/hemoglobin from red meat increases the likelihood of colorectal cancer.Iron provided by dietary
supplements is often found as iron (II)
fumarate, although iron sulfate is cheaper and is absorbed
equally well. Elemental iron, despite being absorbed to a much
smaller extent (stomach acid is sufficient to convert some of it to
ferrous iron), is often added to foods such as breakfast cereals or
"enriched" wheat flour (where it is listed as "reduced iron" in the
list of ingredients). Iron is most available to the body when
chelated
to amino acids - iron in this form is ten to fifteen times more
bioavailable than any other, and is also available for use as a
common iron
supplement. Often the amino acid chosen for this purpose is the
cheapest and most common amino acid, glycine, leading to "iron
glycinate" supplements. The
RDA for iron varies considerably based on age, gender, and
source of dietary iron (heme-based iron has higher bioavailability).
Infants will require iron supplements if they are not breast-fed.
Blood
donors are at special risk of low iron levels and are often
advised to supplement their iron intake.
Regulation of iron uptake
Excessive iron can be toxic, because free ferrous iron reacts with peroxides to produce free radicals, which are highly reactive and can damage DNA, proteins, lipids, and other cellular components. Thus, iron toxicity occurs when there is free iron in the cell, which generally occurs when iron levels exceed the capacity of transferrin to bind the iron.Iron
uptake is tightly regulated by the human body, which has no
regulated physiological means of excreting iron. Only small amounts
of iron are lost daily due to mucosal and skin epithelial cell
sloughing, so control of iron levels is mostly by regulating
uptake. However, large amounts of ingested iron can cause excessive
levels of iron in the blood because high iron levels can damage the
cells of the gastrointestinal
tract, preventing them from regulating iron absorption. High
blood concentrations of iron damage cells in the heart, liver and elsewhere, which can
cause serious problems, including long-term organ damage and even
death.
Humans experience iron toxicity above 20
milligrams of iron for every kilogram of mass, and 60
milligrams per kilogram is a lethal dose.
Over-consumption of iron, often the result of children eating large
quantities of ferrous
sulfate tablets intended for adult consumption, is one of the
most common toxicological causes of death in children under
six.
The medical management of iron toxicity is
complex, and can include use of a specific chelating agent called
deferoxamine to
bind and expel excess iron from the body.
See also
- El Mutún in Bolivia, where 20% of the world's accessible iron and magnesium is located.
- Iron (metaphor)
- Iron Age
- Iron fertilization - Fertilization of oceans to stimulate phytoplankton growth.
- Pelletizing - Process of creation of iron ore pellets.
- Al-Hadid (Iron) in the Qur'an.
- Specht Building - A historic landmark in Omaha, Nebraska utilizing an iron facade.
- Iron in mythology
Bibliography
- Doulias PT, Christoforidis S, Brunk UT, Galaris D. Endosomal and lysosomal effects of desferrioxamine: protection of HeLa cells from hydrogen peroxide-induced DNA damage and induction of cell-cycle arrest. Free Radic Biol Med. 2003;35:719-28.
- H. R. Schubert, History of the British Iron and Steel Industry ... to 1775 AD (Routledge, London, 1957)
- R. F. Tylecote, History of Metallurgy (Institute of Materials, London 1992).
- R. F. Tylecote, 'Iron in the Industrial Revolution' in J. Day and R. F. Tylecote, The Industrial Revolution in Metals (Institute of Materials 1991), 200-60.
- Los Alamos National Laboratory — Iron
- Crystal structure of iron
References
External links
iron in Afrikaans: Yster
iron in Tosk Albanian: Eisen
iron in Arabic: حديد
iron in Asturian: Fierro
iron in Azerbaijani: Dəmir
iron in Bengali: লোহা
iron in Min Nan: Fe (goân-sò͘)
iron in Belarusian: Жалеза
iron in Belarusian (Tarashkevitsa): Жалеза
iron in Bosnian: Željezo
iron in Breton: Houarn
iron in Bulgarian: Желязо
iron in Catalan: Ferro
iron in Chuvash: Тимĕр
iron in Czech: Železo
iron in Corsican: Ferru
iron in Welsh: Haearn
iron in Danish: Jern
iron in German: Eisen
iron in Estonian: Raud
iron in Modern Greek (1453-): Σίδηρος
iron in Spanish: Hierro
iron in Esperanto: Fero
iron in Basque: Burdina
iron in Persian: آهن
iron in French: Fer
iron in Friulian: Fier
iron in Irish: Iarann
iron in Manx: Yiarn
iron in Scottish Gaelic: Iarann
iron in Galician: Ferro
iron in Gan Chinese: 鐵
iron in Gujarati: લોખંડ
iron in Hakka Chinese: Thiet
iron in Korean: 철
iron in Armenian: Երկաթ
iron in Hindi: लोहम्
iron in Croatian: Željezo
iron in Ido: Fero
iron in Indonesian: Besi
iron in Interlingua (International Auxiliary
Language Association): Ferro
iron in Icelandic: Járn
iron in Italian: Ferro
iron in Hebrew: ברזל
iron in Javanese: Wesi
iron in Georgian: რკინა
iron in Swahili (macrolanguage): Chuma
iron in Kongo: Kibende
iron in Haitian: Fè
iron in Kurdish: Hesin
iron in Latin: Ferrum
iron in Latvian: Dzelzs
iron in Luxembourgish: Eisen
iron in Lithuanian: Geležis
iron in Limburgan: Iezer
iron in Lingala: Ebendé
iron in Lojban: tirse
iron in Hungarian: Vas
iron in Macedonian: Железо
iron in Malayalam: ഇരുമ്പ്
iron in Maltese: Ħadid
iron in Maori: Rino
iron in Marathi: लोखंड
iron in Malay (macrolanguage): Besi
iron in Mongolian: Төмөр
nah:Tlīltepoztli
iron in Dutch: IJzer (element)
iron in Japanese: 鉄
iron in Norwegian: Jern
iron in Norwegian Nynorsk: Jern
iron in Narom: Fé
iron in Occitan (post 1500): Fèrre
iron in Uzbek: Temir
iron in Low German: Iesen
iron in Polish: Żelazo
iron in Portuguese: Ferro
iron in Kölsch: Eisen
iron in Romanian: Fier
iron in Quechua: Chuki
iron in Russian: Железо
iron in Sanskrit: लोहम्
iron in Scots: Airn
iron in Albanian: Hekuri
iron in Sicilian: Ferru
iron in Simple English: Iron
iron in Slovak: Železo
iron in Slovenian: Železo
iron in Serbian: Гвожђе (хемијски елемент)
iron in Serbo-Croatian: Željezo
iron in Finnish: Rauta
iron in Swedish: Järn
iron in Tamil: இரும்பு
iron in Telugu: ఇనుము
iron in Thai: เหล็ก
iron in Vietnamese: Sắt
iron in Tajik: Оҳан
iron in Turkish: Demir
iron in Ukrainian: Залізо
iron in Venetian: Fero
iron in Yiddish: אייזן
iron in Contenese: 鐵
iron in Chinese: 铁
Synonyms, Antonyms and Related Words
Gibraltar, Oregon boat,
adamant, adamantine, aluminum, americium, aureate, barium, beryllium, bicycle, bike, bilbo, bismuth, bond, bonds, bone, brass, brassy, brazen, brick, bridle, bronze, bronzy, buff, buffer, cadmium, calcium, calender, camisole, cast-iron, cement, cerium, cesium, chains, chamois, chopper, chrome, chromium, cobalt, collar, concrete, copper, coppery, cuffs, cupreous, cuprous, cycle, diamond, dour, drag, dysprosium, erbium, europium, ferrous, ferruginous, fetter, fetters, firm, flint, flinty, fundamentalist, gadolinium, gag, gallium, germanium, gilt, glazer, gold, gold-filled, gold-plated,
golden, goose, grader, granite, grim, gyves, halter, hamper, handcuffs, hard, hard-core, harrow, heart of oak, hidebound, hobbles, holmium, hopples, horse, hot-press, immovable, immutable, implacable, impliable, indium, inelastic, inexorable, inflexible, intransigent, iridium, ironbound, ironclad, ironhanded, ironlike, irons, irreconcilable, lanthanum, lead, leaden, leading strings, leash, lion, lithium, lutetium, magnesia, magnesium, manacle, manganese, mangle, marble, mercurial, mercurous, mercury, minibike, molybdenum, motocycle, motorbike, motorcycle, muscle-bound,
muzzle, nails, neodymium, nickel, nickelic, nickeline, niobium, oak, obdurate, obstinate, orthodox, osmium, ox, palladium, pedicab, pewter, pewtery, phosphorus, pig, pillory, plane, platinum, polisher, polonium, potassium, praseodymium, press, procrustean, promethium, protactinium, purist, puristic, puritan, puritanic, quicksilver, radium, reins, relentless, restraint, restraints, rhenium, rigid, rigorist, rigoristic, rigorous, road-bike, rock, rock-ribbed, rockbound, roll, roller, rolling pin, rubidium, ruthenium, samarium, sander, scandium, shackle, silver, silver-plated, silvery, sodium, steamroller, steel, steely, stern, stiff, stocks, stone, straightjacket, straightlaced,
strait-waistcoat, straitjacket, straitlaced, stranglehold, strontium, stubborn, tantalum, technetium, terbium, tether, thallium, thulium, tin, tinny, titanium, trail bike, trammel, trammels, tricycle, trike, trowel, tungsten, unaffected, unalterable, unbending, unchangeable, uncompromising, ungiving, unmoved, unrelenting, unyielding, uranium, vanadium, wheel, wolfram, wringer, yoke, ytterbium, yttrium, zinc, zirconium